| Exercise 5 | Hal | Theory: | | |------------|---------------------|---------------|---------| | Team: | Name: | Experiment: | | | Date: | Weeks day and hour: | Major, group: | Remarks | | | Equation for the Lorentza force: | |----------|---| | | The condition of equilibrium between the strength of the electric field and the Lorentz force acting on the electron: | | | The formula for the dependence of the carrier concentration of the Hall constant: | | | One parameter linear regression equation with uncertainty: | | | Propagation of uncertainty principle : | | = | The mobility of carriers of other materials such as .: silicon, graphene.: | | | $n_{Si} = \dots, n_C = \dots$ | | | For electromagnet current (given by assistant) I =[] magnetic field induction is B = | Table 1. Fill the table column headers with SI. Below measured values write down calculated uncertainties. | | slope V _H vs. V _C | slope V_H vs. I _x | slope I_x vs. V_C | μ
[] | R _H [] | σ
[] | n
[] | |-------------|---|---|-----------------------|----------|--------------------|----------|-----------------| | Value | | | | | | | | | Uncertainty | | | | | | | | Using the propagation of uncertainty principle, calculate uncertainty μ , σ , R_H and n, and write them down in Table 1 below the values calculated from the measurements. Compare the obtained value of the mobility of carriers mobility of other materials.