Exercise 5	Hal	Theory:	
Team:	Name:	Experiment:	
Date:	Weeks day and hour:	Major, group:	Remarks

	Equation for the Lorentza force:
	The condition of equilibrium between the strength of the electric field and the Lorentz force acting on the electron:
	The formula for the dependence of the carrier concentration of the Hall constant:
	One parameter linear regression equation with uncertainty:
	Propagation of uncertainty principle :
=	The mobility of carriers of other materials such as .: silicon, graphene.:
	$n_{Si} = \dots, n_C = \dots$
	For electromagnet current (given by assistant) I =[] magnetic field induction is B =

Table 1. Fill the table column headers with SI. Below measured values write down calculated uncertainties.

	slope V _H vs. V _C	slope V_H vs. I _x	slope I_x vs. V_C	μ []	R _H []	σ []	n []
Value							
Uncertainty							

Using the propagation of uncertainty principle, calculate uncertainty μ , σ , R_H and n, and write them down in Table 1 below the values calculated from the measurements. Compare the obtained value of the mobility of carriers mobility of other materials.