Exercise 0	Resistance measurement unce	Experiment results:	
Team:	Name:		
Date:	Weeks day and hour:	Major, group:	Remarks:

Aim

Current-voltage characteristics measurement of simple resistor – derivation of the resistance value from the measurement including its uncertainty.

Equipment

Lab power supply, resistor, PC.

Exercise plan:

- 1. Connect resistor to the power supply. By pressing and releasing a knob of voltage control, enter power supply adjust mode (blinking digits of voltage display).
- 2. Measure I-V characteristics (current-voltage) for the voltage values given by teaching assistant (do not exceed 3 V) (approximately 6 pairs of measurement points). Type measured values (with unit) in table below.
- 3. Turn voltage to 0, disconnect resistor.
- 4. Using spreadsheet software (for example *Calc* from *Open Office*), draw current-voltage characteristics. Complete table calculations using spreadsheet formulas.
- 5. By using the equation for one-parameter linear regression, calculate the resistance:

$$R = \frac{\sum_{i=1}^{n} I_i \cdot V_i}{\sum_{i=1}^{n} I_i^2} R = \dots$$

- 6. Draw the regression line $R \cdot I$ in the graph V(I) completed in the point 3,
- 7. Calculate the uncertainty of the resistance using the equation:

$$\Delta R = \sqrt{\frac{1}{n-1} \frac{\sum_{i=1}^{n} [(R \cdot I_i - V_i)^2]}{\sum_{i=1}^{n} I_i^2}}$$

i	Voltage V[V]	Current I[A]	$I^2[A^2]$	I·V [W]	R·I [V]	R·I-V [V]	$(\mathbf{R}\cdot\mathbf{I}\cdot\mathbf{V})^2[\mathbf{V}^2]$
1							
2							
3							
4							
5							
6 (n)							
Σ						$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	

 ΔR =.....

Measured resistance (with its uncertainty, rounded): $R = \dots \pm \dots \pm \dots$

Relative uncertainty: $\Delta R/R = \dots \%$