Exercise 11	Diffraction and polarization of light		Theory:
Team:	Name:	Experiment:	
Date:	Weeks day and hour:	Major, group:	Remarks

Diffraction

Equation of running wave:
\qquad
On the graph on the side draw two waves, which in a given point in space undergo destructive interference

Fill in the Figure below (view from a top) with an example of the light rays bent at the edges of the slit and destructively interfering on the screen:

In the figure above mark the distance between the slit and the screen, the average angle of deflection of light θ.

Formula for calculation of the approximate $\sin (\theta)$, assuming that the location of the minimum of x, the order of that minimum and the distance between the slit and the screen or the detector is known:
\qquad

Equation for calculation of the width of the slit on the basis of above formula and the equation (1) from the manual :

Table 1. I(x) measurements
Position of central maximum:

Table 2. Interference minima and the slit width

Minima position							
Order of minimum n							
Calculated slit width							

Mean value of the slit width and its uncertainty: \qquad +/- \qquad []

Polarization

표 Malus law:
Table 3. $\mathrm{I}(\alpha)$ measurements

α	I	α	I	

