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http://physics.nist./gov/Uncertainty

Wyrażanie Niepewności Pomiaru. Przewodnik. Warszawa, Główny Urząd Miar 1999

In October 1992, a new policy on expressing measurement uncertainty
was instituted at NIST, National Institute of Standards and Technology.

Elaboration of Guide to Expression of Uncertainty in Measurement by
International Organization for Standardization, ISO, 1993
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Uncertainty in Measurements

Applicable to results associated with:

• international comparisons of measurement standards,

• basic research,

• applied research and engineering,

• calibrating client measurement standards,

• certifying standard reference materials, and

• generating standard reference data.



MEASUREMENT

The result of a measurement is only an approximation or
estimate of the value of the specific quantity subject to
measurement, the measurand which can be classified as:

 simple, or
 complex

Example: Mathematical pendulum, l – the length, T – period are
simple measurands; measured directly

Determination of gravitational acceleration : g-complex measurand

g

l
2T 
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In the course of measurements values different from
those predicted by theory are obtained. The source of
discrepancies between theory and experiment can be
traced back to imperfections due to:
-experimentalist,
-measuring equipment,
-object measured

More perfect the experiment is made, discrepancies
decrease. Error, uncertainty can be reduced.

MEASUREMENT
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Result of a measurement should be given in one of
the following forms:

2m/s9,866(28)g 

C103)(98F 3

Example: In an experiment, the electrochemical equivalent 
k was found to be: 

k=0,0010963     g/C

Δk=0,0000347     g/C

How one can express this result?

significant digits Non-significant digits

Answer. k= (0,00110 ± 0,00004) g/C  or  k= 0,00110(4) g/C 
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Absolute error

xi – experimental result, x0 – real value

Relative error: 

0ii xxx 

0

i

x

x


(1)

(2)

Uncertainty / error

Note: real values of measurand are unknown in most cases
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Uncertainty

Quantities given by formulas (1) and (2) are singular
realization of random variable which is why they
cannot be treated by theory of uncertainty.
Practically, we do not know real values and estimate
uncertainties, due to dispersion of results, from the
laws of statistics.

Uncertainty is
• a parameter related to the result of

measurements,
• characterized by dispersion
• assigned to the measurand in a justified way.
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Absolute uncertainty u is expressed in the same units 

as a measurand

Symbols: u or u(x) or u(concentration of NaCl) 

Relative uncertainty ur(x) the ratio of absolute 

uncertainty to the measured value:

x

xu
xur

)(
)( 

Relative uncertainty has no units and can be expressed in %
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Measures of uncertainty

There exist two measures:

 standard uncertainty u(x)
 maximum uncertainty Δx

x0

x

x0-u(x) x0+u(x)

x0-Δx x0+Δx
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Standard uncertainty

Generally accepted and suggested.

1. Distribution of random variable xi, with a 
dispersion around the average x is characterized 
by standard deviation defined as:

2. Exact values of standard deviation are unknown. 
Standard uncertainty represents an estimate of 
standard deviation. 

 
n

xx 2
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n
lim

 



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Maximum uncertainty

Deterministic measure.

Within this interval:
x0 - Δx < xi < x0 + Δx

all the results xi, will fall.

It is recommended to replace the maximum uncertainty 
by a standard uncertainty:

3

x
)x(u



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Classification of errors

Results of measurements follow some regular patterns i.e. they

are distributed in a way typical for random variables. According to

distribution functions and sources of errors one can distinguish:

Gross errors (mistakes) that have to be eliminated

Systematic error that can be reduced when improving the

measurement

Random errors that result from numerous random

contributions and cannot be eliminated; they should be

treated within the formalism of statistics and probabilistics.
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Distribution functions 

x x
x0

x
x0=x

Φ(x)
Φ(x)

Systematic error
Random error – Gauss 
distribution function
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Analysis of uncertainties

Type A
All methods that use statistical approach:
•large number of repetitions is required
• applies to random sources of errors

Type B
Is based on scientific estimate performed by the 

experimentalist that has to use all information on the 
measurement and the source of its uncertainty

• applies when the laws of statistics cannot be used 
•for a systematic error or for a single result of 

measurement 

Uncertainty in measurements 14



TYPE A
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Example: 
We have performed a series 
of measurements getting the 
following results x1,x2, ….xn.
In such a sample that can be 
considered as big some of 
the results are the same; nk
is a number of random 
experiments, in which the 
same result xk has occurred.
nk/n is a frequency of the 
result

xk nk nk/n

5,2 1 0,011

5,3 1 0,011

5,4 2 0,021

5,5 4 0,043

5,6 7 0,075

5,7 10 0,106

5,8 14 0,149

5,9 16 0,170

6,0 13 0,138

6,1 12 0,128

6,2 6 0,064

6,3 4 0,043

6,4 3 0,032

6,5 1 0,011

Sum 94
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Analysis of data

5,2 5 ,4 5,6 5 ,8 6,0 6 ,2 6,4
0

2

4

6

8

10

12

14

16

n
k

x
k

H istogram
Arithmetic average

x=5,9

Standard uncertainty

 
1

)(
2




 

n

xx
xu i

σ=0,2

n

x
x

n

i
i

 1

Uncertainty in measurements 17

Standard uncertainty of the average

 
)1n(n

xx
)x(u

2
i




 



Gauss distribution function

Probability density function for the result x or its error x
according to Gauss

x0 is the most probable result and can be represented by 
the arithmetic average,  is standard deviation, 2 is 
variance
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Normal distribution

2σ

95.4 % 
99.7 %

x

Φ
(x

)

Within the interval x0- < x < x0+ we find 68.2 % (2/3),  
For x0-2 < x < x0+2 - 95.4 %
For x0-3 < x < x0+3 - 99.7 % 

of all results

68.2% 
pow.
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Bigger σ means higher scatter of the results around its 
average, smaller precision.  
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TYPE B
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A type B evaluation of standard uncertainty is 
usually based on scientific judgement using all the 
relevant information available, which may include: 
• previous measurement data,
• experience with, or general knowledge of, the 

behavior and property of relevant materials and 
instruments,

• manufacturer’s specification
• data provided in calibration and other reports
• uncertainties assigned to reference data taken from 

handbooks

Type A evaluations of uncertainty based on limited
data are not necessarily more reliable than soundly
based Type B evaluations.
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Example: Type B uncertainty of pendulum length
measurement.

Using a ruler the following results were obtained:
L=140 mm, u(L)=1 mm (elemental scale interval),
ur(L)=u(L)/L=1/140, percentage uncertainty 0,7%

Most often the type B deals with evaluation of
uncertainty resulting from a finite accuracy of
an instrument.
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Uncertainty of complex measurand 
– propagation of errors
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Total differential

For a complex measurand y=f(x1,x2,...xn) under
the assumption that x1 , x2 , ... xn are small
as compared with measured x1,x2, ... xn,
maximum uncertainty of y can be calculated from
the differential calculus :

n
n

x
x
y

x
x
y

x
x
y
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1
1
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Law of propagation of uncertainties

Standard uncertainty of complex measurand
y=f(x1,x2,...xn) can be calculated from the law
of propagation of uncertainties as a geometric
sum of partial differentials.
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We measure U and I, then R is determined from

Maximum uncertainty of R (eq. 3)

IUR /
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Accuracy of instruments for U and  I measurements affects the 
uncertainty in R

Absolute uncertainty

Relatice uncertainty

Total differential applied 
to systematic error



Example

In a certain experiment one determines gravitational 
acceleration g on Earth by measuring the period T and 
length L of  a mathematical pendulum. Directly 
measured length is reported as 1.1325±0.0014 m. 
Independently estimated relative uncertainty of period 
measurement is 0.06%, i.e.,

4
r 106

T

)T(u
)T(u 

Calculate the relative uncertainty of g assuming that 
the uncertainties of L and T are independent and result 
from random sources of errors.  
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Rules applied to data plotting

Is this graph made according to the rules? 

1. Mark the experimental 
points!!!
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2. Measurement uncertainty is missing
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3. Adjust the axis to the range of 
experimental data!!!
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4. Properly describe the axes and 
choose the scale in order to read the 
data easily. 

160 200 240 280 320
60
70
80
90

100
110
120
130
140
150
160
170
180

 

 What quantity is represented by this axis???
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5. Do not connect the experimental points by
polygonal chains!!! If the theoretical model is
known, it is advised to make a fit to the
experimental data.
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6. Take care of the esthetic aspect of your plot
(legend, frame, etc.)
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Wykres 1
Rezystywnosc probki  Bi w funkcji temperatury T 
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Fig.1
Resistivity ρ of Bi sample as a function of 
temperature T



Least Square Method - Linear 
Regression
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Minimum of two-variable function:
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Standard deviations of a and b can be determined 
from the laws of statistics:

 22  ii xxnW

n

x
aubu

W

S

n

n
au

i




2

2

)()(

2
)(



Linearization of data
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USEFUL HINTS

1. Results of laboratory measurements suffer from 
uncertainties, that the researcher is obliged to 
estimate according to certain rules. 

2. In the first place, one has to find all possible sources 
of errors, keeping in mind that results with gross 
errors should not be taken into account. In student 
laboratory systematic errors usually mask random 
errors. 

3. Multiple repetitions of measurement do not make 
sense when the systematic error predominates. In 
this case one should perform up to 3-5 measurements 
under the same conditions in order to make sure that 
the results are reproducible. 

Uncertainty in measurements 43



4. When random events are the main source of errors, it 
is necessary to make sure that distribution of results can 
be described by Gauss function. If not, should one expect 
some other distribution function? In order to solve this 
problem one has to repeat the measurements (e.g. 100 
times) under the same conditions, calculate the average 
and variance, draw a histogram, etc.

5. As a measure of uncertainty use rather standard 
uncertainty, scarcely maximum uncertainty.

6. In the case of complex measurand, one should apply 
laws of error propagation. An effort should be made in 
order to estimate the contributions to the total value of 
error coming from measurements of simple measurands. 
In order to achieve this goal one has to calculate 
relative uncertainties.
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7. Graph is quite important part of lab report (not only in the 
student’s laboratory). Graphs should be prepared according 
to certain rules, unambiguous description is required. 

8. If a theoretical model of phenomenon under study is 
known, one should place a theoretical curve (continuous 
line)  upon clearly distinguished experimental points (right 
size symbols should be chosen; experimental cross-bar 
errors should be included). Well-known methods of fitting 
should be applied.

9. Whenever possible, we can perform linearization of data, 
plotting  e.g., y vs. ln (x), or log y vs. log x, or y vs. 1/x etc. 
To data prepared in such a way one can apply a method of  
linear regression.
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