Exercise 9	Energy levels of hydroge	Theory:	
Team:	Name:		Experiment:
Date:	Weeks day and hour:	Major, group:	Remarks

Diffraction grating

Principle of operation of the diffraction grating				
 (complete the picture by introducing grating constant,				
wavelength, angle of deflection)				

Diffraction grating equation:....

Energy levels of hydrogen atoms

Table 2. Wavelength and quantum numbers

Table 2. Wavelength and quantum numbers				
Wavelength	1/wavelength	n	$1/n^2$	
(nm)	(nm^{-1})			

Rydberg constant and ionization energy

	Rydberg equation:				
	Fitting parameters of the dependence of i 1/wavelength vs. 1/n ²				
	Rydberg constant = ± []				
4					

Conclusions (Are the results of experiments agree with the table values?)

Rydberg constant = $109737,312\pm0,011$ cm⁻¹ Theoretical first ionization energy of the hydrogen atom = 1 [Ry] = 13.6 [eV] = [J] Electron charge $e = 1.602 \cdot 10^{-19}$ C