Exercise 12	Viscosity coefficient		Theory:		
Team:	Name:		Experiment:		
Date:	Weeks day and hour:	Major, group:	Remarks		
Stokes equation	· · · · · · · · · · · · · · · · · · ·				
Formula for a l	Reynolds number:				
Equation for one droplet volume:					
Single droplet r	adius equation.:				
The formula fo	r the uncertainty of the	viscosity coefficient from th	he propagation of		
uncertaint principle :					

The formula for the uncertainty of the Reynolds number from the propagation of uncertaint

principle:....

First measurement		Second measurement	
Droplets number		Droplets number	
No	Droplet fall time []	No	Droplet fall time []
1		1	
2		2	
3		3	
4		4	
5		5	
6		6	
7		7	
8		8	
9		9	
10		10	
t =	±	t = .	±

First measurement

The distance between the marks on the cylinder: $L = \dots \pm \dots $				
The average droplet radius: $r = \dots \pm \dots $				
Coefficient of viscosity: $\eta = \dots \pm \dots $				
Reynolds number: $Re = \dots \pm \dots $				
Second measurement				
The distance between the marks on the cylinder: $L = \dots \pm \dots $				
The average droplet radius: $r = \dots \pm \dots $				
Coefficient of viscosity: $\eta = \dots \pm \dots $				
Reynolds number: $Re = \dots \pm \dots$				

Measurement comparison and conclusions: