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Magnetic normal modes of nanoelements
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Micromagnetic calculations are used to determine the eigenfrequencies and precession patterns of
some of the lowest-frequency magnetic normal modes of submicron patterned elements. Two
examples are presented. For a Permalloy-like ellipse, 350 nm3160 nm35 nm thick in zero field,
the lowest frequency normal mode at 4 GHz corresponds to precession in the “ends” of the ellipse.
Other resonant frequencies are compared with the frequencies of spinwaves with discrete wave
vectors. For a normally magnetized 50 nm diameter315 nm thick cobalt disk, the calculated
eigenfrequencies increase linearly with applied field, mimicking the behavior of the experimental
critical current for spin transfer instabilities in an experimental realization of this disk.
fDOI: 10.1063/1.1852191g

I. INTRODUCTION

Knowledge of the magnetic normal modes is valuable
for understanding the thermal noise behavior of small mag-
netic elements such as those in sensors or magnetic memory
cells. A number of experimental investigations of normal
modes have been carried out on micrometer-scale patterned
elements including squares in remnant states,1,2 on squares3,4

and circles3,5–7 in vortex states and on thin strips.8–10 There
are relatively few theoretical investigations of normal modes
in magnetic patterned elements, mostly due to the difficulty
of dealing with nonuniform magnetostatic fields.11,12 Grims-
ditch et al. have used micromagnetic techniques to examine
the normal modes of a small rectangular block, comparing
the computed frequencies to frequencies calculated from in-
finite film dispersion relations with discrete wave vectors.13

While normal modes can describe dynamics only for lin-
ear dynamics, they are also useful for understanding the in-
stabilities that lead to nonlinear phenonomena such as
switching and large amplitude oscillations driven by applied
fields or spin transfer torques.

While spin transfer effects are most frequently observed
in systems with two magnetic layers, they have been been
observed14–16 and calculated17,18 in systems with a single
magnetic layer. In single films, a proper description of spin
transfer instabilities requires a tight integration of a transport
calculation with a micromagnetic calculation. Calculations
done to date17,18 have focused on the transport calculation at
the cost of using an oversimplified treatment of the micro-
magnetic interactions. The most important simplification is
that the samples are treated as infinite layers with magneto-
statics either ignored or treated as a uniaxial anisotropy. To
understand the consequences of this oversimplification, we
have computed the normal modes of some of the measured
samples.16 In these samples, the ferromagnetic layer is more
like a disk than a thin film so that the modes are very differ-
ent from thin film modes.

This article explores the normal modes of two

nanometer-scale patterned bits, one a thin-film ellipsoid that
illustrates the computational technique and the other is a
short cylinder that models the magnetic nanoelement in a
spin-transfer torque experiment.16 The micromagnetic calcu-
lations were performed using the NIST micromagnetic test
code OOMMF.19 Starting with a minimum energy state, the
magnetization was excited by a short, strong field pulse so
that magnetic moments were rotated a maximum of approxi-
mately 10°. In general this field pulse was not uniform. Field
pulses with different symmetries were used to excite normal
modes with corresponding symmetries. After the field pulse,
the evolution of the magnetization was calculated using the
Landau–Lifshitz equations of motion with Gilbert damping
and a=0.01. The evolution of the magnetization during the
ringdown was captured by saving the magnetization configu-
ration M sr i ,tjd at uniform time intervals. In many cases, the
ringdown appears as a complicated wiggling of the magne-
tization when viewed as an animation. However, when
viewed in the frequency domain, the apparently complicated
behavior can be understood as the superposition of a few
normal modes.

For each pointr i in the magnetic element, the ringdown
record contains a time series of the magnetization at that
point. Local power spectra of the magnetization are con-
structed by performing a discrete Fourier transform

Sxsr i, fd = Uo
j

Mxsr i,tjdei2pft jU2
. s1d

To obtain an overall view of the magnetization behavior, the
power spectra are summed overr i

S̄xsfd = o
i

Sxsr i, fd. s2d

Note thatS̄ is very different from the power spectrum of the

spatially averaged magnetization. We find that plots ofS̄sfd
exhibit many peaks corresponding to oscillations at eigenfre-
quencies of the magnetization. At these peak frequencies,
Ssr i , fd gives a map of the precession amplitude for the ex-
cited mode.
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II. THIN ELLIPSE

We have calculated linear magnetization dynamics for a
160 nm3350 nm35 nm ellipse of isotropic Permalloy in
zero applied field using 2.5 nm32.5 nm35 nm cells. The
relaxed state of this ellipse has nearly uniform magnetization
aligned with the long axis of the ellipse in the central region
but nearer to the edges, the magnetization tends to follow the
edge contour, except at the ends where the magnetization
points normal to the edge.

Field pulses with different spatial symmetries were used
to highlight different normal modes. The modes are shown
along the top of Fig. 1. The modes excited by a uniform field
pulse include the lowest frequency mode corresponding to
motion near the “ends” of the ellipse where the magnetiza-
tion has a large component normal to the edge. Also excited
are a mode with large amplitude in the center and a series of
modes with even numbers of nodal lines running parallel and
perpendicular to the symmetry axes of the sample. To excite
other modes, we have used excitation pulses with other sym-
metries, including field pulses with field amplitudes propor-
tional to x or y as measured from the center of the sample.
The end modes have nearly the same resonant frequency
whether the precession in the ends is in phasesuniform
pulsed or out of phasesodd y pulsed. This indicates that the
ends of the ellipse interact very weakly.

We have attempted to explain the observed spectra using
analytical models that include the effects of applied field,
exchange, and magnetostatic interactions. The magnetostatic
interactions can be approximated two ways:s1d by calculat-
ing demagnetization factors for uniform magnetization ors2d
by using the dispersion relation for spin waves in infinite thin
films and selecting discrete wave vectors appropriate for the
sample geometry.

Because the sample is not an ellipsoid, the magnetostatic
fields are not uniform. We calculate spatially averaged de-
magnetization factors for the ellipse usingEd= 1

2Vsm0NaMa
2

for uniform M pointing in thex, y, andz directions to yield
Nx=0.0515,Ny=0.0182, andNz=0.931. For an ellipsoid with
the same demagnetization factors, the precession frequency
for uniform magnetization isv=gm0MsÎsNx−NydsNz−Nyd

or f =4.91 GHz, marked as “U” in Fig. 1. The gyromagnetic
ratio, g=2.113105 m/As andMs=83105 A/m.

To estimate frequencies for nonuniform modes, we use
the dispersion relation for an infinite thin film. At zero ap-
plied field with the magnetization in plane

Svskd
g

D2

= FHd + Mss1 − Nkd +
2A

m0Ms
k2G

3FHd + MsNk

kx
2

k2 +
2A

m0Ms
k2G . s3d

Here, Nk=f1−exps−kddg /kd is a k-dependent demagnetiza-
tion factor for a film of thicknessd,20 A is the exchange
stiffness parameter, andA=13 pJ/m. If we naively chose
discrete wave vectorsk such thatkx=nxp / s160 nmd and ky

=nyp / s350 nmd for integernx andny, the frequencies given
by Eq. s3d are plotted along the bottom of Fig. 1.

The agreement between the eigenfrequencies determined
from the dispersion relation and the eigenfrequencies deter-
mined from the full micromagnetic calculation is qualitative
at best. The discrete values ofk correspond more closely to
rectangular samples than to the elliptical shape. For the re-
sults shown, we have used the average static demagnetiza-
tion field Hd is −NyM =−14.6 kA/m, but there is some am-
biguity in this choice. The static micromagnetic calculation
yields a field of onlyHd=−6.22 kA/m at the center of the
ellipse where the precession is strongest for many of the
modes, but when this value is used, agreement with the dy-
namic micromagnetic results is worse. A final shortcoming of
the simple models is that they do not predict modes corre-
sponding to the end modes.

III. NANODISK

For spin transfer instabilities in single films, calculations
show that the stability or instability of particular modes of
the magnetization depend on the competition between the
current induced torque and the damping. For the current in-
duced torque to drive a mode of the magnetization in a single
layer toward instability, two things are required.17,18First, the
mode must be laterally nonuniform so that spins diffusing in
a lead from one part of the magnetic layer to another will
exert a torque. Second, the two lead-magnet interfaces need
to be asymmetric, otherwise the torques on both interfaces
cancel. This asymmetry can arise in two ways: the leads on
the two sides can be asymmetric17 or the mode that becomes
unstable can be nonuniform through the thickness of the
layer.18

We have used the micromagnetic spectral mapping tech-
nique to look at the lateral nonuniformity and interface sym-
metry of the eigenmodes of a normally magnetized disk of
isotropic cobalt, 50 nm in diameter and 16 nm thick.
Experiments16 have shown that the magnetization of this
nanodot becomes unstable when the current passing through
it exceeds a field-dependent critical current. In the computed
minimum energy state, the magnetization was nearly satu-
rated in thez direction normal to the circular faces of the
disk in applied fields ranging from 2 to 4 T. Because the
thickness of the disk is comparable to the diameter, this is a

FIG. 1. Eigenmode imagesstopd and spatially averaged power spectra
smiddled for a 160 nm3350 nm35 nm ellipse of Permalloy in zero applied
field. The spectra and images were obtained from three time series following
excitation field pulses with three different symmetries. The calculated mode
frequenciesscenterd are compared with frequencies calculated from a spin-
wave dispersion relationsbottomd. The end mode frequency is labeled “E”
and the uniform precession frequency for an ellipse is labeled “U.”
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three dimensionals3Dd calculation, and we used 1 nm cubic
cells. Precession was excited by applying a field pulse
Hpsr d~xyz only in the “corner” regionx.0, y.0 and z
.0. Modes even and odd inz were determined by comput-
ing power spectra ofMx

+sr ,td=Mxsx,y,d/2 ,td+Mxsx,y,
−d/2 ,td for even modes andMx

−sr ,td=Mxsx,y,d/2 ,td
−Mxsx,y,−d/2 ,td for odd modes. The power spectra and
mode images are shown in Fig. 2.

Calculations that ignore magnetostatics18 show that the
lowest threshold for instability is for a mode odd inz and
with a wavelength comparable to the dot diameter. From our
micromagnetic results, we identify this mode as the second
odd mode shown in Fig. 2sbd. Even though other modes have
lower frequency and therefore less damping, as described
below, the greater current induced torque due to the asym-
metry in thenz=1 mode gives it the lowest critical current.

One of the prominent features of the experimental data
is that the critical current extrapolates to zero as a function
of the magnetic field applied normal to the disk.16 The
instability occurs when the spin transfer torquessmodulo
mode geometryd equal the damping. The dampingG is inde-
pendent of the current, and for Gilbert damping,G
=2svi /m0gda]vi /]H. We have computed the field depen-
dence of the frequencies several of the normal modes, and
we find that ]vi /]H is very nearly constantssee Fig. 3d.
Therefore, we claim that the critical current is very nearly
proportional to mode frequency for these modes.

In agreement with experiment, we find that the mode
frequenciessand therefore critical currentsd extrapolate to
zero frequency at a field close to zero. However, this agree-
ment is coincidental rather than fundamental and may not be
the explanation for the experimental results.

In summary, we have used dynamic micromagnetic tech-
niques to determine the lowest frequency eigenmodes for a

magnetic ellipse in zero field and for a perpendicularly mag-
netized disk. The eigenfrequencies are only in qualitative
agreement with simple models, which fail to predict local-
ized modes at the end of the ellipse. The field dependence of
the eigenmode frequencies in the disk mimics the field de-
pendence of the critical currents in a spin transfer torque
experiment.
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FIG. 2. Normal modes and spectral density for a 16 nm thick, 50 nm diam
cobalt disk forsad modes with evenz symmetry andsbd modes with oddz
symmetry. Because the second odd mode is nonuniform both in plane and
normal it is most likely to be driven unstable by a spin current.

FIG. 3. Applied field dependence of normal mode frequencies. Crosses are
for evenz-symmetry modes and circles are for oddz-symmetry modes. The
line shows the extrapolation of the second odd mode to zero field.
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