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Micromagnetic simulations have been performed to obtain the dynamic susceptibility spectra of 4×4 cobalt

nanowire arrays with different spatial configurations and geometries. The susceptibility spectra of isolated wires have

also been simulated for comparison purposes. It is found that the susceptibility spectrum of nanowire array bears a

lot of similarities to that of an isolated wire, such as the occurrences of the edge mode and the bulk resonance mode.

The simulation results also reveal that the susceptibility spectrum of nanowire array behaves like that of single isolated

wire as the interwire distance grows to an extent, which is believed due to the decrease of magnetostatic interaction

among nanowires, and can be further confirmed by the static magnetic hysteresis simulations. In comparison with single

nanowire, magnetostatic interaction may increase or decrease the resonance frequencies of nanowire arrays assuming a

certain interwire distance when the length of array increases. Our simulation results are also analysed by employing

the Kittel equation and recent theoretical studies.
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1. Introduction

The potential applications of magnetic nanowire

(NW) arrays in perpendicular magnetic recording in-

dustry and microwave devices have stimulated numer-

ous researches to investigate their static and dynamic

magnetic properties.[1−13] However, the tendency to

reduce the dimension of NW arrays and their con-

stituents gives rise to a new problem: magnetostatic

interaction among NWs, which plays a crucial role es-

pecially when the separation between adjacent NWs

is greatly shortened. Many works have pointed out

that the static magnetic properties of NWs are af-

fected by magnetostatic interaction between NWs.

For instance, it has been shown that strong magne-

tostatic interaction in magnetic NW arrays could lead

to an antiferromagnetic ground state (checkerboard

pattern)[4−6] and the magnetostatic interaction field

in low aspect ratio CoP cylinder nanoarrays is strong

enough to exceed the switching field of the elements

in the arrays.[7] Recent studies on the magnetization

reversal behaviour of high density cobalt NW arrays

reveal that the magnetostatic interaction field between

NWs increases not only with NW diameters but also

with NW lengths.[8]

A second facet concerning magnetic NW arrays is

their dynamic properties. Among them, the dynamic

susceptibility spectrum of NW arrays is of great im-

portance in both fundamental and application fields.

One attribute that makes this property desirable is

that the eddy current loss interfering with susceptibil-

ity spectrum is greatly suppressed for nanowires.[9−11]

Another reason is that the resonance frequency of the

uniform gyromagnetic mode for NW arrays can be

tuned by varying the aspect ratio and material, apply-

ing dc fields, and changing the porosity of membranes

in which NWs are embedded.[12] The last method is

thoroughly discussed in Refs. [12] and [13], indicat-

ing that dipolar interaction between NWs has a great

impact on the resonance frequency of NW array.

As an important technique to investigate the dy-

namic properties of nanostructured materials,[14−25]

micromagnetics is fueled by the growing calculation

speed of computers. However, the simulation on NW
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arrays still requires prohibitive time,[3,21] resulting in

the neglect of the dynamic properties of NW arrays

in the arena of micromagnetics. Previous simula-

tions on dynamic susceptibility focused mainly on iso-

lated elements such as single nanowire,[14,15] films,[22]

nanodots.[23] Other simulations concentrate on cou-

pled systems such as coupled stripes,[16] submicron

arrays,[17] and nanodot arrays,[18−20] indicating that

magnetostatic interaction is a dominant factor in the

dynamic magnetic properties of these systems.

Enlightened by the above-mentioned experiments

and micromagnetic simulations, this work is intended

to investigate the susceptibility spectra arising from

cobalt NW arrays with different spatial configura-

tions and geometries by means of numerical simula-

tion. The aim is to qualitatively analyse the contribu-

tions of magnetostatic interaction in NW array with

different configurations. To this end, the magnetic

behaviours of isolated wires have also been studied

for comparison purposes and the interwire distance

between neighbouring wires in the array is deliber-

ately set to be larger than exchange length Lex =√
2A/µ0M2

s ≈ 4.93 nm so that exchange coupling be-

tween wires could not enter our investigation.

2. Simulation procedure

The micromagnetic simulations are performed

using a three-dimensional object-oriented micro-

magnetic framework (OOMMF)[26] by solving the

Landau–Lifshitz–Gilbert (LLG) equation as a func-

tion of time:

dM

dt
= −γM ×Heff +

α

Ms

(
M × dM

dt

)
, (1)

where M is the magnetization and Heff is the ef-

fective field taking into account the exchange, self-

magnetostatic, anisotropy and applied field terms; γ

(2.21×105 mA−1·S−1) is the Gilbert gyromagnetic ra-

tio and α (damping constant) is set at 0.015 and 0.5

for the dynamic response of the applied field and hys-

teresis loop simulation, respectively.

In our work, the field-dependent behaviours of

single isolated cobalt NWs, assuming a cylindrical

shape, and their corresponding 4×4 square NW ar-

rays are simulated. This choice is justified by previous

works pointing out that the simulation results of 4×4

NW arrays agree well with experimental values.[3,27]

For simplicity, the diameters of all nanowires in the

simulations are fixed at 40 nm. The simulated NW

arrays fall into two categories: the one with varying

interwire-distance (D) and the one with a fixed D but

with varying length (L). The default parameters in

OOMMF for cobalt are taken in our simulations: sat-

uration magnetization Ms = 14× 105 A/m, exchange

stiffness constant A = 30×10−12 J/m, anisotropy con-

stant K1 = 5.2 × 105 J/m3. The magnetocrystalline

anisotropy easy axis is set to be the [001] direction,

parallel to the wire length (z-direction). The initial

magnetization is along the [100] direction and normal

to the wire length. And a cubic cell size of 5 nm is

adopted for all simulations.

The magnetic spectra of NWs are obtained in the

following procedure. Firstly, starting from the ini-

tial magnetization, the equilibrium configuration of

magnetization is obtained in the absence of external-

applied magnetic field. Then a weak pulse field as-

suming the form of H(t) = 1000 exp(−109t) (t in s,

H in A/m) is applied perpendicular to the long axis

of the wires. The dynamic response of magnetization

is tracked under the pulse field. Both the pulse field

and excited magnetization are then processed by a

fast Fourier transform (FFT) approach, after which

the susceptibility spectrum χ(ω) are calculated using

the following equation

χ(ω) = M(ω)/H(ω) = χ′(ω)− iχ′′(ω), (2)

where ω is the frequency, M(ω) and H(ω) are the ex-

pressions in frequency domain for magnetization and

pulse field after FFT treatment, respectively; χ′(ω)

refers to the real part of χ(ω) and χ′′(ω) denotes the

imaginary part.

The frequency corresponding to the maximum

value of χ′′(ω) is the so-called resonance frequency,

which can be examined by the Kittel equation when

the magnetocrystalline anisotropy easy axis is along

the wire length[28]

ω =
γ

2π

√
[H0 +Hk + (Nx −Nz)Mz][H0 +Hk + (Ny −Nz)Mz], (3)

where H0 is the external static field, Hk = 2K1/µ0Ms is the effective magnetocrystalline anisotropy field, Nx,

Ny, Nz are the demagnetizing factors depending on the ratio of ellipsoidal axes.
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3. Results and discussion

The obtained equilibrium configuration for an

NW array with D = 50 nm is shown in Fig. 1. The

three-dimensional (3D) image of the magnetization

configurations for the NW array typifies a “checker-

board” pattern while each wire retains a flower state.

In order to minimise the total free energy of the sys-

tem, magnetizations between the nearest neighbours

are aligned antiparallelly, and form a closure pattern

at the ends. As indicated by the checkerboard sig-

nature observed in the MFM images of the remanent

state for nanomagnet arrays,[4,5] magnetization con-

figuration shown in Fig. 1 is a macroscopic manifesta-

tion of the strong magnetostatic interactions between

wires. We believe that this antiferromagnetic align-

ment between adjacent NWs also has to do with the

initial magnetization of the NW array, which is set to

be normal to the wire length. In Refs. [27] and [29],

similar observations were obtained in Ni NW array

and elliptical NiFe nanoarray, respectively.

Fig. 1. Magnetization configurations in the equilibrium

state for a cobalt 4×4 NW array, with D = 50 nm (centre-

to-centre distance) and L = 80 nm. Each wire has a di-

ameter of 40 nm.

Intuitively, magnetostatic interaction between

wires would decay as D increases. This is sub-

stantiated by our simulation. Illustrated in Fig. 2

is the equilibrium configuration for the NW arrays

with a larger D (D = 240 nm) than that in Fig. 1.

Clearly, magnetizations for all wires are parallel and

the checkerboard pattern vanishes. This configuration

indicates that the wires in the array are weakly influ-

enced by each other as the interwire coupling is greatly

weakened by the large spacing. Thus it is predictable

that the NW array with equilibrium configuration in

Fig. 2 would behave rather like single isolated wire.

Fig. 2. Magnetization configurations (cross section of xz

plane) in the equilibrium state for a cobalt 4×4 NW array

with D = 240 nm, L = 80 nm. Each wire has a diameter

of 40 nm.

Further attesting the magnetostatic interaction

among NWs are the hysteresis loops, as shown in

Fig. 3, for single wire and the aforementioned NW

arrays. The hysteresis loop for NW array with

D = 50 nm is greatly sheared due to the interaction

among wires, showing decreased squareness and coer-

civity. The decrease in coercivity is around 2000 Oe

(1 Oe=79.5775 A/m), nearly a third of the coerciv-

ity for NW array with D = 240 nm. The sheared

hysteresis loops for NW arrays had been experimen-

tally observed.[8,12] According to the phenomenologi-

cal mean field theory,[12] we believe that the smaller

coercivity values can be explained by an interaction

field perpendicular to the wire axis, which would de-

crease the total effective field by competing against the

shape anisotropy and magnetocrytalline anisotropy

that favour an easy axis along the wire length.

Fig. 3. M–H loops for an isolated single NW (A, dot-

dashed line) with L = 80 nm, and for its 4×4 NW ar-

ray with D = 50 nm (B, marked by full circles) and

D = 240 nm (C, straight line) respectively. The magnetic

field is applied along the length direction of NW.

As a result, a lower external field can switch the mag-

netic moment in the NW array with D = 50 nm. Be-

sides, multiple Barkhausen jumps observed in the hys-

teresis loop of NW array with D = 50 nm are believed

to stem from the magnetostatic interaction between
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wires and the non-synchronous magnetization reversal

process for different wires in the array.[30] Also clearly

shown in Fig. 3, the hysteresis loop for NW array with

D = 240 nm is very close to that of an isolated sin-

gle wire, which is in accordance with its equilibrium

magnetization configuration shown in Fig. 2.

The magnetic spectra for the above-mentioned

NW arrays are shown in Fig. 4. For comparison,

the magnetic spectrum for a single isolated wire is

also illustrated. Similar to the magnetic spectrum

Fig. 4. Real (a) and imaginary (b) susceptibility spec-

trum for NW array with L = 80 nm, D = 50 nm (A,

marked by dashed line) and D = 240 nm (B, straight line).

The imaginary susceptibility spectrum for single NW with

L = 80 nm is also plotted (C, marked by triangle).

of a single wire, there are two resonance peaks for

the NW arrays. Both peaks can be ascribed to the

natural resonance of the spins in the NW, but they

are caused by different parts of the wires’ magneti-

zation. As discussed in other previous work,[14,15,31]

the peak at the lower frequency (called edge mode or

rim mode) is caused by the splay pattern of the edge

spin configuration, while the one at the high frequency

(called the bulk resonance mode or main mode) is due

to the spin configuration in the middle part of the

wires. Both the edge mode and the bulk mode have

been confirmed by the experiments in thin ellipsoidal

magnetic elements[32] and in cobalt stripes.[33] Other

modes observed in these experiments correspond to

the minor peaks around the two main peaks, arising

from the inhomogeneity of the magnetization config-

uration, which is partly demonstrated in Fig. 1.

Moreover, in Fig. 4, the magnetic spectrum shifts

in frequency as D changes. The magnitudes of both

major peaks also are observed to vary, which is be-

lieved due to the change of relative volumes of the

end parts and central parts of the wires. The ex-

tent of the end parts is mainly determined by the self-

magnetostatic field at the wire ends.[15] In our case,

this field for one wire in the array is influenced by the

stray field from neighbouring wires due to magneto-

static interaction, which would change as D enlarges.

In the mean time, the effective field that determines

the volume of the central part is also affected by mag-

netostatic interaction, but in a different manner and to

a different extent. Consequently, the change of the rel-

ative magnitudes of the two major peaks is expected.

In line with the equilibrium magnetization config-

urations and hysterisis loops, the magnetic spectrum

of NW array (Fig. 4) with D = 240 nm behaves like

that of single isolated wire. This behaviour can also

be observed in the magnetic spectra (not shown here)

of NW array with L = 200 nm and varying D. In

Figs. 5(a) and 5(b), the bulk resonance frequencies

as functions of D for the two sets of NW arrays are

plotted. In both cases, as D becomes larger, the reso-

nance frequency would approach to that of single iso-

lated wire (37.6 GHz for the wire with L = 80 nm and

42.97 GHz for the wire with L = 200 nm).

We can understand the above phenomena by em-

ploying recently published research results on the

magnetostatic interaction between NWs. In Ref. [34],

an explicit form of the interaction energy Eint between

two nanotubes with axial magnetization was obtained.

Applied to a pair of NWs, the interaction energy Eint

reads

Eint = −σ1σ2πµ0MsR
4

2d
[(1 + (L/d)2)−1/2 − 1], (4)

where the unit of Eint is J, σ1, σ2 takes the value ±1,

allowing the magnetization of each NW to point up or

down; Ms is saturation magnetization of each wire, R

the radius, L the length, d the distance between NWs.

This equation is suitable for two NWs in the array

studied here since in equilibrium state magnetization

is parallel to the wire axis and only deviates slightly

from the equilibrium state when perturbed by the ex-

ternal pulse field. Exploiting this formula, the abso-
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lute value of interaction energy for two adjacent NWs

embedded in the NW array as described in Fig. 5(a)

or 5(b) is demonstrated in Fig. 5(c). It is evident that

the interaction energy between two neighbouring NWs

decreases rapidly as D increases. For example, when

the distance between the two NWs with diameter of

40 nm and L = 80 nm reaches 240 nm, the interaction

energy between them would decrease to a value near

zero. With little interaction between NWs, the reso-

nance frequency of NW array would approach that of

single NW, as shown in Figs. 5(a) and 5(b).

Fig. 5. The dependence of resonance frequency on inter-

wire distance D for 4×4 array with L = 80 nm in (a) and

L = 200 nm in (b). The dependence of interaction energy

on D for two adjacent NWs embedded in the two sets of

arrays is shown in (c).

In order to investigate the effect of L on the sus-

ceptibility spectra, the behaviours of another set of

nanowire arrays with a fixed D = 80 nm and varying

L from 60 nm to 800 nm have been simulated. Three

of them are shown in Fig. 6. Clearly shown is that the

bulk mode of nanowire arrays shifts up to the higher

frequency as L increases, while the position of edge

mode remains almost unaffected. The relative mag-

nitudes of the high frequency peak and low frequency

peak increase as L grows, reflecting the growing mid-

dle part of the wires and the almost fixed regions at

the end of the wires. Similar behaviours have also

been observed in Ref. [15].

Fig. 6. The imaginary susceptibility spectrum of NW ar-

rays with a fixed D = 80 nm but with different length

L.

Shown in Fig. 7(a) are the bulk mode fre-

quencies of single NW with different aspect ratio

(length/diameter) ranging from 1.5 to 20, and the res-

onance frequencies for their corresponding 4×4 NW

arrays with D = 80 nm. The calculated values based

on the Kittel’s equation (see Eq. (3)) are also shown

(see the dotted-dash line). Although the resonant fre-

quencies for both the single NW and NW array ap-

proach the Kittel prediction as L increases, the differ-

ence between the frequencies of single NW and those

of NW arrays could not be overlooked. When L is

shorter than 200 nm, the resonance frequency of NW

array is lower than that of single NW. This situation

is reversed after L exceeds 400 nm.

Equation (4) may help us gain some insight into

the difference in Fig. 7(a). Based on Eq. (4), figure

7(b) shows the absolute value of interaction energy

as a function of L for two adjacent NWs embed-

ded in the array as described by Fig. 7(a). It is

evident that the interaction energy between neigh-

bouring wires increases as L increases. Meanwhile,

the shape anisotropy field favouring an easy axis

along the long axis also increases. This can be

seen in Fig. 7(a) as guided by the dot-dashed line

since the frequency increase in the Kittel equation

(Eq. (3)) is contributed mainly by the increase in
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shape anisotropy as the length becomes larger. Even-

tually, it is the relation between magnetostatic in-

teraction and the sum of shape anisotropy and ax-

ial magnetocrystalline anisotropy that leads to the

increasing resonance frequency trend for NW ar-

ray as L rises up. Generally speaking, when L is

shorter than 200 nm, magnetostatic interaction be-

tween NW arrays could augment anisotropy along the

wire length and increase the resonance frequency.

The same analysis can be applied to Fig. 5(a).

Fig. 7. (a) The variation of resonance frequency for NW

arrays as a function of length L. The resonance frequencies

for isolated wires are also plotted for comparison. Calcu-

lation based on Kittel equation (Eq. (3)) is shown by the

dot-dashed line. The dependence of interaction energy on

L between two neighboring NWs embedded in the NW

array is shown in (b).

But when L is larger than 400 nm, magnetostatic

interaction can diminish shape anisotropy and mag-

netocrystalline anisotropy, resulting in lower reso-

nance frequencies than those in single NW. The latter

trend agrees with previous theoretical and experimen-

tal results.[12,16] We suppose that this is because both

the theoretical and experimental results address only

nanowires with large aspect ratio. Quantitative solu-

tion to this problem is very complex since it requires

detailed knowledge about the interaction field expe-

rienced by each wire in the array and about how it

affects the total effective field; even recent theoreti-

cal attempts to gain detailed information about the

magnetostatic interaction field in coupled systems are

confined to only a few wires.[34,35] Magnetic suscepti-

bility measurements and ferromagnetic resonance ex-

periments on NW arrays with different L would help

clarify this problem, which are under way based on

the above simulation results.

4. Conclusion

Micromagnetic simulations have been performed

to obtain the magnetic susceptibility spectra for 4 ×
4 cobalt NW arrays with varying interwire distances

and lengths. Many similarities have been found, in

the occurrence of edge mode and bulk resonant mode,

between the susceptibility spectra of NW arrays and

that of an isolated wire. The susceptibility spectrum

of an NW array will behave much like that of an iso-

late NW when the interwire distance increases to an

extent, which is attributed to the decreased magneto-

static interaction among NWs in the array. This has

been further confirmed by the M–H loop simulations.

When the length of NW array with D = 80 nm in-

creases, magnetostatic interaction first increases the

resonance frequency when the length is shorter than

200 nm and then decreases the resonance frequency

after the length exceeds 400 nm.
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U, Fischer S F and Kronmüller H 2001 Appl. Phys. Lett.

79 1360

087502-6



Chin. Phys. B Vol. 19, No. 8 (2010) 087502

[6] Ross C A, Hwang M, Shima M, Cheng J, Farhoud Y M,

Savas T A, Smith H I, Schwarzacher W, Ross F M, Redj-

dal M and Humphrey F B 2002 Phys. Rev. B 65 144417

[7] Shima M, Hwang M and Ross C A 2003 J. Appl. Phys.

93 3440
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