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Abstract—We demonstrate a radio-frequency electromagnetic
signal detection in spintronic devices utilizing various magne-
toresistance effects. Different device layout is proposed such
as tunneling magnetoresistance nano-pillar or giant magnetore-
sistance stripe, which enable DC voltage generation when a
device is supplied with radio-frequency current. Depending on
the detection method, sensitivity of up to 80 V/W was achieved
in a frequency range between 1 - 10 GHz, depending on the
magnetic field.

Index Terms—spintronics, microwave detectors, ferromagnetic
resonance

I. INTRODUCTION

Ferromagnetic thin films can emit or absorb electromagnetic
signals in a microwave frequency range due to spin waves
excitation’s. In addition, in such films, resistance is a function
of the magnetization vector, arising from magnetoresistance
(MR) effect. Magnetization vector can be controlled using
external magnetic field, or, more efficiently, by spin polarized
current using so called spin transfer torque (STT) effect
[1]. Combining all these physical effects, by means of spin-
torque diode effect [2] absorption of the radio-frequency
(RF) signal can produce a measurable DC voltage due to
mixing of the RF current and oscillating resistance of the
device. Different magnetoresistance mechanisms are observed
in magnetic multilayer thin films, such as anisotropic- (AMR),
giant- (GMR) [3] or tunneling-magnetoresistance (TMR) [4].
AMR of a fraction of a per-cent is measured in most of
ferromagnetic thin films (Fe, Ni, Co and their alloys) when
a magnetization direction changes with respect to the current
direction. In more complicated structures, such as ferromagnet
/ normal-metal / ferromagnet multilayer system, a stronger
GMR of a few per-cent is measured. Moreover, changing
normal metal to an ultra-thin (1-2 nm thick) insulator enables
one to use TMR effect, which reaches a few hundred per-
cent, however, at a cost of complicity of the multilayer stack
and fabrication method. In case of AMR and GMR device
a simple strip is suitable, whereas, in case of TMR a more
complicated nanometer-sized pillar is needed. In general, mag-
netization direction is determined by the magnetic anisotropy
and external magnetic field. In ferromagnetic thin films, RF
current induces spin-polarized electrons, which in turn drives
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magnetization into precession, which is particularly efficient
at ferromagnetic resonance frequency. In this work we aim to
present and compare various spintronic microwave detectors
from sensitivity, size and performance point of view, also with
respect to existing Schottky-diode devices.

II. EXPERIMENTAL

In this paper we examine three groups of devices: AMR
consisting of: W(4) / CoFeB(0.9) / MgO(5) multilayer, GMR:
Ta(3) / SAF / CoFe(2.1)/ Cu (2.1) / CoFe(1) / NiFe(5) / Ru(0.5)
/ Cu(1) / Ta(3) and TMR: Ta(5) / SAF / CoFeB(2.3) / MgO(2)
/ CoFeB(1.6). Thicknesses in parentheses are given in nm. All
devices were deposited using magnetron sputtering method
on thermally oxidized Si wafer. Synthetic antiferromagnet
(SAF) layer system was used to pin the magnetization of
bottom magnetic layer in GMR and TMR devices[5]. After the
deposition process multilayers were patterned using electron-
beam lithography, ion-beam etching and lift-off processes into
rectangular stripes of different width, ranging from 1 to 40
pum? and 70 um? long or elliptical nano-pillar of 0.28 x 0.53
pum? with appropriate electrode system. Electron microscope
images of fabricated devices are presented in Fig. 1.

Sensitivity of the device is determined using microwave
signal generator Agilent E8257D and DC voltmeter connected
to the device under test (DUT) using microwave cabling and
bias-T from Mini-Circuits. Frequency dependent losses of the
measurement setup and DUT (originating mainly from the
impedance mismatch) were taken into account [6].

III. RESULTS
A. AMR

Firstly, we focus on the simplest device consisting of a
single CoFeB layer deposited on the W underlayer and covered
with a thin insulator capping. The application of electrical
current through the W underlayer induces spin accumulation
at W/CoFeB interface due to spin Hall effect, which in turn
drives magnetization precession. The input power was set to
P, = 10 dBm, which results in about Payr = 0.87 mW
effective power in 10 pm-wide stripe. The magnetic field was
swept from O up to 3 kOe at the angle of 45 degree with
respect to the long axis of the stripe. The mixing DC voltage



thus, the resistance oscillations through the GMR effect. The
MR ratio in this device reached 8 %. In this case the power
delivered to the device is Poyr = 3 mW. The sensitivity at
the resonance reaches 2.5 V/W. Contrary to AMR and TMR

Fig. 1. Example images of fabricated AMR stripe (a) and TMR device (b-
d). Typical contact electrodes have 100 x 100 pm? size. TMR nano-pillar
is placed at the intersection between top and bottom electrode (b), magnified
image in (c) and side view on (d).

reaches 0.25 mV at the test frequency of 4 GHz. By taking into
account the measurement setup losses, the resulting sensitivity
is about 0.3 V/W. DC voltage as a function of the external
magnetic field and frequency is plotted in Fig. 2. The optimal
conditions for the detection is determined by the effective
magnetic anisotropy and external magnetic field [7].
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Fig. 2. Mixing DC voltage as a function of the external magnetic field

measured for different input frequencies. The power delivered to the stripe
was Payvr = 0.87 mW.

B. GMR

Next, we present results from the GMR stack. In this case,
the majority of the RF current flow through a low resistive
Cu spacer [8], which produces the RF Oersted field. This
field induces the precession of the magnetization vector and,

(discussed later), where the spin torque effect is responsible
for the resistance change through angular precession of the
magnetization vector [9], in case of GMR stripe the magnetic
Oersted field drives the magnetization angular precession,
therefore, the shape of the curve is asymmetric - Fig. 3. The
dependence of the maximum output voltage vs. input power
is depicted in the inset of Fig. 3.
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Fig. 3. Voltage vs. input frequency dependence for different magnetic fields.
Inset presents the output voltage vs. input power.

In addition, the RF signal detection in case of GMR can be
realized also at the frequencies below the resonance, i.e., in
a much broader range, at the cost of the sensitivity. In such
case, the operation of the detector is less dependent on the

magnetic field [6].

C. TMR

In case of the magnetic tunnel junction exhibiting the TMR
effect, the current has to flow perpendicular to the multilayer
structure, therefore, the fabrication technique includes three-
step process with separate bottom and top contact. In such
device, the electrons passing one ferromagnetic layer are spin
polarized and tunnel through 1.6 nm-thick MgO insulating
tunnel barrier. Depending on the relative orientation between
magnetization vectors of the top and bottom layer, spin polar-
ized carriers exert torque on the top ferromagnet, which leads
to the resistance change. Because the TMR effect measured
in the fabricated device reached 100%, a higher sensitivity
is also expected [10]. In case of TMR device, the maximum
voltage applied to the tunneling barrier cannot exceed 1.5 V,
because of a possibility of the electrical breakdown [11]. The
input power in this case was, therefore, limited to P, = -
10 dBm, which resulted in Pryr = 1.1 pW. At resonance
condition (test frequency 1.6 GHz and external magnetic field
H = 600 Oe) the output power reached 45 W and sensitivity
was calculated to 86 V/W. We note that for smaller input power
and in the electric bias condition even higher sensitivity of up



to 12000 V/W was measured [12], which are competing with
existing semiconductor detectors.
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Fig. 4. Output voltage vs. input frequency dependence for different magnetic
fields measured in TMR device. In this case the power delivered to the device
is PTMR =1.1 ,U,W.

IV. DISCUSSION

Table I contains comparison of different aspects of spintron-
ics microwave detectors design and operation. Clearly, with
higher MR ratio the sensitivity increases. In case of TMR de-
vice, the sensitivity reaches tens of V/W, however, if properly
biased, it can be comparable or even greater than a typical
silicon Shottky Diode detector [13]. The main difference
between operation of the spintronic magnetoresistive detectors
and semiconductor diodes is that they need external magnetic
field for the operation. This requirement can be easily fulfilled
by integration of the bias coils on the device chip. In addition,
spintronic devices typically have a narrow detection band,
which can be used as a frequency-sensitive detectors in a
real applications. Moreover, the build-in magnetic bias can be
used to tune the frequency-range. Nevertheless, further work
is needed to increase the sensitivity.

TABLE I
COMPARISION BETWEEN DIFFERENT SPINTRONICS DETECTORS. HMIC
STANDS FOR HYBRID MICROWAVE INTEGRATED CIRCUIT.

[ type [ lithography [ MR ratio (%) [ sensitivity (V/W) ]
AMR 1-2 step 0.5 0.4
GMR 1-2 step 8 2.5
TMR 3 step 100 86 (up to 12000 [12])
Schottky | HMIC - up to 3800

V. CONCLUSION

In conclusion we fabricated various spintronic devices for
the microwave detection comparison. Metallic AMR and GMR
device show relatively low MR ratio, which coincides with low
microwave sensitivity. On the other hand, TMR device with
MR ratio of about 100 % can reach sensitivity range typical
for Schottky diodes. Detectors based on spintronic elements
need external magnetic field for operation, which limits the

detection frequency. However, the need for this additional field
can be used to tune the frequency range, in which the device
is the most sensitive.
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